

Reach Educator Guide Module No.

Next Generation Science Standards	1	2	3	4	5	6	7	8	9	10
I. Scientific and Engineering Practices										
1. Asking questions (for science) and defining problems (for engineering)	•	•	•	•	•	•	•	•	•	•
2. Developing and using models.	•	•	•	٠			٠		•	•
3. Planning and carrying out investigations	•	•	•		•	•	•	٠	•	•
4. Analyzing and interpreting data	•	•		٠	•	٠		٠		•
5. Using mathematics and computational thinking	•	•	•	•	•		•	٠		•
6. Constructing explanations (for science) and designing solutions (for engineering)	•	٠	•	٠	•				•	•
7. Engaging in argument from evidence			•		•			•	•	•
8. Obtaining, evaluating, and communicating information	•		•	٠	•			٠	•	•
II. Crosscutting Concepts										
1. Patterns	•			•	•			•		•
2. Cause and effect mechanism and explanation	•	•		٠		٠		٠	•	•
3. Scale, proportion, and quantity		٠	•		•		٠			•
4. Systems and system models				•				٠	•	•
5. Energy and matter: flows, cycles, and conservation					•	٠		٠	•	
6. Structure and function		•	•						•	•
7. Stability and change					•	•				
III. Disciplinary Core Ideas			-							
Physical Sciences										
MS-PS1-2. Analyze and interpret data on the properties of substances before and after										
the substances interact to determine		•								•
if a chemical reaction has occurred.										
Life Sciences		-	-			-	-			
MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource										
availability on organisms and populations of organisms in an ecosystem.					-					<u> </u>
MS-LS2-2. Construct an explanation that predicts patterns of interactions among					•					
organisms across multiple ecosystems.	1								1	i i

MS-LS2-5. Evaluate competing design solutions for maintaining biodiversity and								
ecosystem services.				•				
Earth and Space Sciences								
MS-ESS1-1. Develop and use a model of the Earth-sun-moon system to describe the								
cyclic patterns of lunar phases,					٠			
eclipses of the sun and moon, and seasons.								
MS-ESS2-3. Analyze and interpret data on the distribution of fossils and rocks,								
continental shapes, and seafloor structures to				•				•
provide evidence of past plate motions								
ct a scientific explanation based on evidence for how the uneven distributions of Earth's				•			•	•
groundwater resources are the result of past and current geoscience processes.				•			•	•
MS-ESS2-5. Collect data to provide evidence for how the motions and complex	•					•	•	
interactions of air masses results in changes in weather conditions.	•					•	•	
MS-ESS2-6. Develop and use a model to describe how unequal heating and rotation of								
the Earth cause patterns of atmospheric and oceanic circulation that determine regional	•					•		
climates.								
MS-ESS3-3. Apply scientific principles to design a method for monitoring and				•	•		•	•
minimizing a human impact on the Environment.				-	-			÷
MS-ESS3-4. Construct an argument supported by evidence for how increases in human				•	•		•	
population and per-capita consumption of natural resources impact Earth's systems.							-	
Engineering, Technology, and Applications of Science								
MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient								
precision to ensure a successful solution,								
considering relevant scientific principles and potential impacts on people and the	•	•	•				•	•
natural environment								
that may limit possible solutions.								
MS-ETS1-2. Evaluate competing design solutions using a systematic process to	•	•						•
determine how well they meet the criteria and constraints of the problem.	•	•					•	•